unit 1- (levers) ## Test 1 | A) Put (\checkmark) or (X) in front of the following sentences: | (5 marks) | | | |---|-----------------|---|--| | 1. The force lies between the resistance and the fulcrum in the first clo | iss levers. (| | | | 2. The resistance lies between the force and the fulcrum in the sec | | _ | | | levers. | |) | | | 3. Crowbar is a first class lever. | (|) | | | 4. A lever saves efforts when the arm of the force is longer than th | e arm of | | | | the resistance. | (|) | | | 5. The fulcrum lies between the force and the resistance in the thir | d . | | | | class levers. | (|) | | | 6. The lever balances when the product of "effort force x its arm" i | is equal to | , | | | the product of "resistance force x its arm". | (|) | | | B) Give a reason for each of the following: | | | | | · · · · · · · · · · · · · · · · · · · | | | | | Levers are very important in our daily life. | | | | | 1. Levers are very important in our daily life. | | | | | 1. Levers are very important in our daily life. | | | | | | | | | | Levers are very important in our daily life. 2. Manual broom doesn't have a mechanical benefit. | | | | | | | | | | 2. Manual broom doesn't have a mechanical benefit. | | | | | 2. Manual broom doesn't have a mechanical benefit. A) Complete the following sentences: | (5 ma | , | | | 2. Manual broom doesn't have a mechanical benefit. | , , , , , , | , | | | 2. Manual broom doesn't have a mechanical benefit. A) Complete the following sentences: 1. The only type of levers where the arm of force and the arm of reis | , , , , , , | , | | | 2. Manual broom doesn't have a mechanical benefit. A) Complete the following sentences: 1. The only type of levers where the arm of force and the arm of re | sistance are eq | , | | ## Worksheets & Exams | Calculate the length of the arm of resistance. | | | |--|------------|-----------| | 2. Does the lever save effort? Why? | | | | | <u></u> | | | .) What happens when? | | (5 marks) | | 1. The effort force is less than the resistance force. | 6. | • | | 2. The effort force is equal to the resistance force. | | | | 3) Write the scientific term: | | | | The type of levers, where the effort force is always smaller
than the resistance force. | (| 1 . | | 2. The lever which provides accuracy in performance. | (| | | 3. The most popular type of levers in our daily life. | , (| | | A) Correct the underlined words: | | (5 mark | | 1. Bottle opener is an example of the third class levers. | | | | 2. The human arm is from the second class levers. | | | | 3. The first class levers always have no mechanical benefits. 4. Coal holder is an effort-saving lever. | | | | 2) A third class lever with a force arm of 0.5 meter length, an | ıd a resis | tance ar | | of 15 cm length. If the resistance equals 200 Newton, calc | ulate the | е апесиг |